Effects of a standardized group intervention on physical exercise and health:

The MoVo concept

Reinhard Fuchs¹, Wiebke Göhner² & Harald Seelig¹

¹Universität Freiburg; ²KFH Freiburg

- submitted for publication -

Date:

03-26-2008

Author Note:

This work was funded by German Pension Insurance (DRV-Bund; grant number 8011-106-31/31.74). We are grateful to the staff and patients of the Reha-Zentrum Schömberg (director: PD Dr. med. Ingrid Schittich) for their support and participation in this study. We also acknowledge the valuable work of Caroline Mahler in assisting with the design and practical implementation of the intervention program.

ABSTRACT

This paper reports a lifestyle modification program targeting physical exercise. The program is based on the MoVo (Motivation-Volition) concept and consists of two group counseling sessions, a one-on-one meeting, a postal reminder, and a follow-up telephone call. Participants are taught cognitive-behavioral strategies of goal-setting, action planning, barrier management and self-monitoring. N=220 in-patients of an orthopedic rehabilitation clinic were assigned to the usual care group (UCG) or the intervention group (IG). Assessments were conducted at 5 time points. At the 12 month follow-up, the level of exercise in the IG was 28.5 min/week higher than in the UCG (p=.05). Moreover, 50% of the IG was exercising for at least 60 min/week, but only 33% of the UCG (p=.01). During the 12 months after clinic discharge, the level of pain (health indicator) in the IG remained at the low level that was reached at the end of the clinic stay, whereas in the UCG it slowly re-increased. Results provide evidence that intervention programs based on the MoVo concept lead to a substantial improvement in exercise behavior and health status.

Key words: physical activity, exercise, intervention program, maintenance, pain

INTRODUCTION

The positive health effects of physical exercise are well documented. Epidemiological and clinical studies show that physical activity reduces in particular the risk of cardiovascular disease, type 2-diabetes, colon cancer, osteoporosis, and helps people to cope with stress, anxiety and depression (Baumann, 2004; Landers & Arent, 2001; Warburton, Nicol, & Bredin, 2006). Although most people know about the beneficial outcomes of physical activity, only about 25% of the adults in western societies exercise at the level needed to achieve these health benefits (USDHHS, 2000). For this reason, public health scientists and managers focus their attention on the development of intervention programs that enable sedentary people to adopt a physically active lifestyle.

Two major reviews summarize the status of current research regarding individual or group-focused interventions towards promoting physical activity (Hillsdon, Foster, & Thorogood, 2005; Kahn et al., 2002). Kahn et al. review individually-adapted health behavior change programs based on 18 reports. All programs taught specific self-management skills (e.g., goal setting, self-monitoring) that enable participants to increase their exercise level. Such intervention was offered to participants mainly in group settings, by mail, or telephone. Studies that measured changes in the time spent on physical activity found a median net increase of 35.4%, while studies that measured change in VO₂ max observed a median increase of 64.3%. Kahn et al. (2002) conclude that "there is strong evidence that individually-adapted health behavior change programs are effective in increasing levels of physical activity" (p. 87). The review by Hillsdon et al. (2005) considered 18 randomized controlled trials with a minimum six month follow-up. The effect of intervention on self-reported physical activity was positive and moderate (pooled standardized mean difference: 0.31). Of the four studies reporting the outcome

more than six months after initial intervention, two studies found significant differences in the cardio-respiratory fitness levels, but *no study* found significant differences in physical activity levels between the intervention and control group at the 12 or 24 month follow-up. The authors summarize their review by stating that "physical activity interventions have a positive moderate sized effect on increasing self-reported physical activity... at least in the short to mid-term" (p. 7f.). However, it is still unclear to what extent the specific components of the intervention could have contributed to the behavior changes.

The present paper reports results from an exercise-related intervention study based on the *MoVo concept* (Fuchs, 2007). The acronym "MoVo" stands for "motivation" and "volition" indicating that this approach is related to motivation theories of health behavior (Ajzen, 1991; Bandura, 2000; Rogers, 1985) as well as volition theories of action planning and action control (Gollwitzer, 1999; Kuhl, 2000; Schwarzer, 2008). The MoVo concept consists of two components: the MoVo process model and the MoVo intervention program (Göhner & Fuchs, 2007). Whereas the MoVo process model provides the theoretical framework, the MoVo intervention program specifies the concrete contents and procedures applied to change people's health behavior.

MoVo process model

The MoVo process model tries to integrate central elements of two different lines of research: the social cognition research with a strong focus on motivational aspects (Conner & Norman, 2005) and the self-regulation research emphasizing the volitional side of behavioral control (Baumeister & Vohs, 2004). The model assumes that a successful set-up and maintenance of health behavior (such as physical exercise or a low-fat diet) basically depends on five psychological factors: strength of the goal intention, self-concordance of this goal intention, implementation intentions, volitional strategies of intention shielding, and outcome experiences. Subsequently, these five factors are briefly described using physical activity as the target behavior.

- Figure 1: The MoVo process model -

Goal intention is the central motivational construct of the model (Gollwitzer, 1999). Goal intentions are the result of motivational processes of weighing up the costs and benefits of adopting a particular behavior (outcome expectancies) and of appraising one's own ability to perform it successfully (self-efficacy) (Ajzen, 1991; Bandura, 2000). Goal intentions are more generally expressed resolutions of the type "I intend to resume my fitness training". The MoVo process model states that it is not only the *strength* but also the *self-concordance* of a goal intention that is important to set up and maintain a new behavior. Sheldon and Houser-Marko (2001) use the term "self-concordance" to denote the extent to which a specific goal intention is in accordance with the general interests and values of the person. A meta-analysis by Koestner, Lekes, Powers, and Chicoine (2002) shows that the likelihood of attaining a personal goal increases with the degree to which the underlying goal intention is self-concordant. In order to translate goal intentions into real actions, goal intentions need to be furnished with *implementation intentions* (Gollwitzer, 1999). Implementation intentions are simple plans, in which a person specifies the when, where, and how of an intended action. For instance: "I intend to participate at the fitness course on Tuesday 6 p.m. at the City Health Center". Several studies have shown that the formation of implementation intentions significantly enhances the likelihood of beginning and continuing regular physical activity (Milne, Orbell, & Sheeran, 2002; Lippke, Ziegelmann, & Schwarzer, 2004).

Even carefully elaborated implementation intentions can be challenged by external barriers (e.g., heavy workload at the office) and internal barriers (e.g., lethargy). When faced with barriers a person needs to apply volitional strategies of *intention shielding* (Kuhl, 2000) such as mood management, stimulus control, cognitive restructuring, or attention control to keep the intended action on target. Empirical evidence that such self-regulatory processes play an important role in the realization of exercise-related implementation intentions is provided by Sniehotta, Scholz and Schwarzer (2005). Finally, the MoVo process model introduces a construct called *outcome experiences*. This variable reflects the personal experiences and appraisals regarding the newly acquired behavior. After the first exercise meetings a person may conclude for example: "This training really helps me to improve my fitness", or "The pain in my arm has reoccurred". Based on such positive or negative outcome experiences, people confirm or change their corresponding outcome expectancies and thus maintain or modify their future goal intentions (cf. Rothman's [2000] concept of "perceived satisfaction with received outcomes").

MoVo intervention program

Using the MoVo process model as a theoretical framework, the most important implication for the design of effective intervention programs concerns the differentiation between motivational and volitional strategies (cf., Milne et al., 2002). While motivational strategies aim to form a strong and self-concordant goal intention, volitional strategies focus on developing implementation competencies and action control abilities.

The MoVo intervention program encompasses the following *motivational strategies*: (a) clarification of personal health objectives (by asking participants to find out what their objectives are and how much effort they would be willing to invest in them); (b) contemplation of different actions to achieve the health objectives (by encouraging participants to balance the

pros and cons of these actions, and to reflect their self-efficacy beliefs towards these actions); (c) formation of specific goal intentions (by requesting participants to decide on one or more of the actions); (d) checking self-concordance of this goal intention (by asking participants whether the goal is really their own or merely an introjection of others); and (f) reflection of outcome experiences (by supporting the participant to consciously perceive especially the positive consequences of their new behavior).

In addition to the motivational strategies the MoVo intervention program places a strong emphasis on subsequent *volitional strategies*: (a) generating implementation intentions (by inviting participants to make concrete when-where-and-how-plans for their goal intentions); (b) anticipating personal barriers (by making participants think about the critical internal and external barriers that could impede their new behavior); (c) developing counter strategies (by helping participants to find individual ways of coping with the barriers); and finally (d) selfmonitoring the new behavior (by encouraging participants to protocol their actual exercise behavior).

The MoVo intervention program exists in different versions to fit the needs of particular settings and target groups (e.g., rehabilitation; overweight groups). MoVo-LISA is one of these specific intervention programs (LISA stands for "Lifestyle-Integrated Sport Activity") developed for an in-patient rehab setting. In the Method section the specific features of MoVo-LISA are described in more detail.

Research question

The present study aims to examine the effectiveness of the MoVo-LISA intervention among inpatients of an orthopedic rehabilitation clinic. The study design permits a comparison of the intervention group with a control group (usual care) at 5 assessment points. It is hypothesized that even 12 months after discharge from the clinic, patients who participated in MoVo-LISA show a substantially higher level of regular physical exercise than their counterparts who did not receive this intervention. Furthermore, it is expected that during the 12 months following discharge, the higher level of regular exercise in the intervention group will have contributed to a significantly lower level of pain compared to the control group. Experience of pain is considered a major health indicator among orthopedic patients. Since MoVo-LISA is a short and economic program based on a standardized curriculum the evidence of its effectiveness would have implications in all those areas of health where the set-up of a physically active lifestyle is an important goal.

METHODS

Setting and participants

Participants were in-patients of a rehabilitation clinic in Southern Germany. The clinic stay usually lasted three weeks. Each week an average of 48 patients were consecutively recruited to the clinic. Two weeks before the scheduled clinic stay, all patients were informed by mail about the aims and procedures of the study, asked for their willingness to participate and, if they decided to participate, requested to fill out the attached informed consent and first questionnaire (t1). Based on data from this t1-assessment, only those patients were included in the further study who met two criteria: (a) diagnosis of a chronic orthopedic condition (arthrosis, chronic back pain, etc.), and (b) self-report of being sedentary (defined as "0 minutes of physical exercise per week"). Participation was on a voluntary basis; there were no disadvantages for patients who refused to participate.

Study design

The study design encompasses a control group and an intervention group. Patients of the control group underwent the regular clinic program (usual care) that consisted of a complex regime of medical, physiotherapeutic and psychological therapies. Patients of the intervention group received the regular clinic program as well, but *additionally* participated in the MoVo-LISA intervention. The t1-assessement of the control group took place from December 2005 to March 2006; the t1-assessment of the intervention group was conducted from May to August 2006. The MoVo-LISA program was only implemented into the clinic after the discharge of all patients of the control group (April 2006). Thus, the usual care program and the additional intervention program were clearly separated.

Questionnaires were filled out in both groups at five assessment points: 2 weeks before the clinic stay (t1), at the end of the 3-week clinic stay (t2), six weeks after clinic (t3), six months after clinic (t4), and twelve months after clinic (t5). All questionnaires were mailed to the participants' home addresses, except those at t2 which were distributed and collected within the clinic.

Sample

In the *control group*, a total of 1,024 persons were invited to participate in the study, of which 681 agreed by sending back the completed t1-questionnaire (response rate: 66.5%) (Figure 2). Of those 681 persons, 429 were excluded from the study either because they rescheduled their clinic stay (32 persons did not start their in-patient rehabilitation program as planned), or because they did not meet the two inclusion criteria (38 persons were not diagnosed with chronic orthopedic condition, 359 persons were not sedentary). Thus, the *starting sample* of the control group at t1 consisted of n=252 persons. Of these 252 persons, 85.3% (n=215) participated at the t2-assessment, 71.0% (n=179) at t3, 61.9% (n=156) at t4, and 61.5% (n=155) at t5.

- Figure 2: Participant flow -

In the *intervention group* a total of 696 persons were invited to participate in the study, of which 432 agreed by sending back the completed t1-questionnaire (response rate: 62.1%). Of those 432 persons, 281 were excluded from the study (5 rescheduled their clinic stay, 21 did not have the required diagnosis, and 255 were not sedentary). Thus, the *starting sample* of the intervention group at t1 consisted of n=151 persons. Of these 151 persons, 136 (90.1%) actually participated at all components of the MoVo-LISA intervention that were administered at the clinic. Major reasons for not (completely) attending the MoVo-LISA meetings were: refusal of further participation after the first group meeting (8 persons), and interference with other therapeutic activities (7 persons). Those 15 persons who did not receive the full intervention program were excluded from the further assessments (t2 to t5). Of the 151 patients of the starting sample, 87.4% (n=132) participated at the t2-assessment, 80.8% (n=122) at t3, 68.2% (n=103) at t4, and 69.5% (n=105) at t5.

The analyses reported in this paper are based on the *longitudinal samples* of the control group (n=132) and the intervention group (n=88), in which complete data on the five points of assessment for all subjects are available. A socio-demographic description of both longitudinal samples at t1 is shown in Table 1. The groups differed significantly only with respect to their age, however, the age difference is small (2.1 years) and unlikely to threaten the comparability of the groups.

- Table 1: Demographic Characteristics of the Sample at Baseline (t1) -

Intervention

The contents and procedures of the MoVo-LISA program are standardized and documented in a detailed curriculum published elsewhere (Göhner & Fuchs, 2007). In the current study, the

MoVo-LISA intervention was realized by five "moderators" (trained clinic staff: one psychologist and four physiotherapists) who were trained to conduct the program by the scientific project team during a two-day seminary. MoVo-LISA consists of five components: a first group meeting (6 patients per group), a one-on-one interview, a second group meeting, a postal reminder (3 weeks after discharge) and a short telephone contact (5 weeks after discharge). The first group meeting was scheduled 60 minutes and took place in the second week of the three-week clinic stay. The one-on-one interview lasted 10 minutes per patient and took place at the end of the stay (last but one day before discharge). The second group meeting was scheduled 90 minutes and took place on the very last day of the stay.

In the first group meeting, each patient clarifies his/her health goals ("What are my personal health goals? What health condition do I want to reach?"). In the next step, patients define what kind of action they would be ready to take in order to attain their health goals. For this purpose, patients are asked to collect several *exercise ideas*, e.g., activities such as Nordic walking or swimming, in which they could see themselves taking part. After further reflection and weighing up, the patients finally choose their favorite exercise – ideally, they choose the exercise idea that they imagine they could implement into their daily routine in the long run. During the time span of about seven days between the first group meeting and the one-on-one interview, patients are requested to transfer their favorite exercise idea into an *exercise plan*. This is done by answering the following questions in detail: Does the exercise idea meet my personal interests and dispositions (self-concordance)? Would the exercise idea be practical for me, i.e., would it fit into my daily family and job routine? Next, patients are asked to write out an exercise plan in detail by describing when, where and how they plan to perform the exercise

(implementation intentions). Last, with the support of the physicians and physiotherapists, the exercise plan is reviewed with respect to its effectiveness in attaining the personal health goals.

Developing an exercise plan is the most difficult part of the MoVo-LISA intervention, because only few people have ever thought about their exercise behavior in any detail. Therefore, the one-on-one interview is crucial for discussing the exercise plan with regard to its selfconcordance, its practicability and its effectiveness, but most important for checking its precision. In this interview, the moderator does not only help patients by exploring the "correct" exercise plan, but questions critically whether the exercise plan is really cast-iron. Once patients have generated a satisfying exercise plan, they transfer it in writing into their personal records.

The second group meeting starts out with each patient presenting his/her exercise plan. The main topic of this meeting is the identification of internal and external barriers that could potentially hinder or even overthrow the plan. Finally, the very last topic of the second group meeting is the development of personally relevant counter-strategies to overcome the barriers. Personal barriers as well as personal counter-strategies are written down in the records of each patient.

After discharge, the main problem is the practical implementation of the exercise plan into the daily routine of the patients. In order to gain high action control, patients keep the minutes of their performance of the exercise plan over a time span of six weeks (selfmonitoring). To strengthen their commitment, patients are asked to mail their protocol back to the project manager six weeks after discharge. Three weeks after discharge a postal reminder is sent to all participants; it consists of a memo card and a letter. The memo card graphically summarizes the contents of MoVo-LISA and patients are advised to place it in a central position in their homes. The letter also recalls the contents of MoVo-LISA and ends with the announcement of the planned telephone contact in two weeks time. (The telephone contact had been previously announced at the end of the second group meeting.) This telephone contact, the very last part of the intervention, serves to inquire how the patients progressed with their exercise plan in the meantime, about newly emerged barriers and strategies and to discuss how to overcome the barriers, and how patients could improve the implementation of the exercise plan into their daily routine even more. Self-monitoring, postal reminder and telephone contact all take on an important function in establishing a strong commitment to the new exercise behavior.

Measures

The questionnaires for the five points of assessment were identical except for questions on demographic variables assessed at Time 1 only. All psychological constructs of the MoVo process model and various subjective health indicators were assessed. In this publication we only report on behavioral variables (physical exercise) and health variables (pain experience).

Physical exercise was assessed by asking the patients whether they currently perform one or more "sport activities" on a regular basis, to write down these activities and to indicate for each both the frequency (per month) and the duration (per episode). For the construction of the "Physical Exercise Index" (minutes per week) only those activities were considered that involve larger groups of skeletal muscles and lead to the acquisition or maintenance of endurance capacity (e.g., jogging), strength (e.g., gym exercises), flexibility (e.g., yoga), and/or coordination skills (e.g., dancing). Based on this definition, activities such as billiards, fishing, and chess were excluded.

To measure *pain experience* patients were asked how often they suffered from the following conditions: headache, pain in the neck, the shoulders, the back, the arms and/or hands, the legs and/or feet, and joint pain. The five-point response scale ranged from "never" (coded as

1) to "very often" (coded as 5). For the construction of a "Pain Index" the values of the seven items were summed up and divided by seven. Descriptive statistics for the Pain Index at t1 were: M=3.53; SE=0.05; SD=0.71; median=3.57; skewness=-0.30; excess=-0.33; range=1-5).

RESULTS

Behavioral change: Changes of means

Changes of means in the Physical Exercise Index are shown in Figure 3. An analysis of covariance for repeated measures with sex and age as covariates yielded a significant interaction term group-by-time [F (3, 648) = 10.69; p = .001; $n^2 = .05$] indicating a substantial effect of the MoVo-LISA intervention on the level of physical exercise. Since both covariates did not show significant effects on the dependent variable we subsequently report observed means (not adjusted for sex and age): At t1 all participants reported to perform no physical exercise (M = 0min/week) since this was the selection criterion. At t2 (end of clinic stay) there was no assessment of physical exercise: the specific exercise therapy provided at the clinic was not comparable with normal daily exercise performed before and after the clinic stay. Six weeks after discharge (t3) the level of physical exercise had increased in both groups although the increment was much higher in the intervention than in the control group [156.0 vs. 83.5 min/week; F(1, 218) = 27.3; p = .000; $\eta^2 = .11$]. Six months after discharge (t4) the level of physical exercise had diminished in both groups but the intervention group remained markedly more active than the control group [91.7 vs. 59.5 min/week; F(1, 218) = 5.9; p=.016; $n^2 = .03$]. Finally, at the 12 month follow-up (t5) the difference between both groups was still 28.5 min/week [96.1 vs. 67.6 min/week; F(1, 218) = 3.9; p=.050; $\eta^2 = .02$].

- Figure 3: Means of Physical Exercise -

Behavioral change: Changes of prevalence

Figure 4 shows the percentage of non-exercisers defined as those participants who reported that they currently perform any physical exercise at all (Physical Exercise Index = 0 min/week). Again both groups started at t1 with a 100% inactivity rate (which was one of the inclusion criteria). Six weeks after discharge (t3) the prevalence of inactivity had diminished to 47.7% in the control group and to as much as 11.4% in the intervention group (χ^2 =31.5; *p*=.001; φ =.378). Thereafter, at t4 inactivity reoccurred in both groups although in the intervention group the percentage of non-exercisers remained substantially lower than in the control group (39.8% vs. 59.8%; χ^2 =8.5; *p*=.004; φ =.196). At the 12 month follow-up, 59.1% of the control group but only 43.2% of the intervention group reported performing no physical exercise at all (difference:15.9%; χ^2 =5.4; *p*=.021; φ =.157).

- Figure 4: Percentage of non-exercisers (0 minutes/week) -

To complete the pattern of prevalences Figure 5 displays the percentage of participants who reported exercising at least 60 minutes per week (Physical Exercise Index \geq 60 min/week). Six weeks after discharge (t3) there was a great increase to 78.4% in the intervention group and 46.2% in the control group (group difference at t3: $\chi^2=22.6$; p=.000; $\varphi =.321$). Afterwards prevalence rates were reduced substantially in both groups at t4 to 47.7% and 33.3%, respectively ($\chi^2=4.6$; p=.032; $\varphi =.145$). Finally, at t5 in the intervention group the percentage of active persons was 17.4% higher than in the control group (50.0% vs. 32.6%; $\chi^2=6.7$; p=.010; $\varphi =.175$).

- Figure 5: Percentage of participants who exercise for at least 60 min/week -

Health change: Pain experience

Figure 6 illustrates the intervention effect on the health indicator "pain experience". An analysis of covariance for repeated measures with sex and age as covariates yielded a significant

interaction term group-by-time [F(4, 824) = 3.16; p < .014; $\eta^2 = .02$]. Since both covariates showed significant effects on the dependent variable, means in Figure 6 were adjusted for sex and age. Starting at t1 with rather high levels of pain, both groups profited substantially from the therapeutic programs at the clinic (parallel decrease from t1 to t2 in both groups). Note that there was *no* significant difference between both groups at t2 supporting the contention that the primary focus of MoVo-LISA is on behavior change – and not on the change in the health condition. At t2, in the intervention group the planned exercise behavior did not yet exist and could therefore not have led to any health differences. However, while in the control group the level of pain re-increased steadily from t2 to t5, in the intervention group it remained rather stable at a stage that was reached at the end of the clinic stay. Presumably, the higher level of physical exercise in the intervention group (see Figures 3-5) paid off in terms of a significant lower level of pain after 12 months (mean difference 3.08 vs. 2.79; F(1, 206) = 6.61; p=.011; η^2 = .03).

- Figure 6: Pain experience: Changes of means from t1 to t5 -

DISCUSSION

Results show that the MoVo-LISA intervention was effective in increasing the level of physical exercise in patients who were inactive before their participation in a rehabilitation program. Twelve months after discharge, the intervention group was still more active than the usual care group by 28.5 minutes per week (p=.05). Furthermore, at this follow-up 50% of the MoVo-LISA patients were active for at least 60 minutes per week but only 33% of the usual care patients (p=.01). These findings deserve special attention for several reasons:

The behavioral effects are relatively strong compared to the findings of previous studies. In the review by Hillsdon et al. (2005) no study found significant differences in physical activity levels between the intervention and control group at the 12 month follow-up. A more recent intervention study by Moore et al. (2006) – also conducted in a rehab setting and in many respects comparable to MoVo-LISA – reported a mean difference of only 8 minutes per week between the intervention and control group at the follow-up after one year. We attribute MoVo-LISA's success primarily to the systematic translation of theoretical concepts (MoVo process model) into practical intervention measures.

Furthermore, intervention effects can be considered "strong" because in the study clinic even the usual care was conducted at a high quality level. This is not only concluded from the personal impression that we received during the many visits to the clinic, but also from the marked improvements from t1 to t3 in the control group (see Figures 3-6). Therefore, additional intervention effects were not easily accomplished; the net effect of 28.5 minutes per week after 12 months is therefore an indication of a successful intervention strategy over and above that of the established "good practice".

Effects can be reproduced because they were achieved by a standardized program documented in a detailed curriculum (Göhner & Fuchs, 2007). The five moderators who carried out the MoVo-LISA intervention at the study clinic reported that "in general we realized the program as put down in the curriculum", but of course with personal modifications when required by the specific group situation. The moderators were regular members of the clinic staff without any previous experience in lifestyle modification programs.

Effects were obtained at a relatively low cost. The personnel costs of the MoVo-LISA intervention are comprised of the requirements for the first group meeting (60 min for 6 patients), the one-on-one meeting (10 min for 1 patient), the second group meeting (90 min for 6 patients), the postal reminder after 3 weeks (10 min per patient), and the telephone call after 5

weeks (10-15 min per patient). This adds up to about 60 minutes per patient (without preparation time). These 60 minutes seem to be a good investment if they help to prevent the reoccurrence of the medical conditions that were the reason for the clinic stay.

Results provide evidence that MoVo-LISA has not only the potential to change the behavior but also can help to prevent the reoccurrence of medical conditions that would make further clinic stays necessary. Figure 6 shows that during the months following discharge, the level of pain in the intervention group remained as low as it was at the end of the clinic stay, whereas in the control group the level of pain slowly re-increased. The difference in development of pain experience is probably due to the different levels of physical exercise in the intervention and control group. From this result we can learn that it often takes many months of regular physical exercise, before – under real world conditions – its health protecting properties can be substantiated.

The external validity of these findings should be high because the recruitment of participants was not seriously biased by self-selection. *All* patients entering the clinic during a specific period were eligible for recruitment if they had a chronic orthopedic condition and if they reported to be sedentary. Patients who met these criteria were automatically selected for the "MoVo-LISA course" and had it prescribed by their physicians as a regular part of their personal rehab program. Of those selected, 9.9% did not participate in the intervention. Although this non-compliance contains some elements of self-selection, the external validity of the study is not seriously limited by the recruitment of motivated volunteers.

Limitations

Problem of control group. The recruitment procedure of the intervention and control group was not based on randomization. Instead, we applied a sequential group design in which the control

group consisted of patients who attended the study clinic from November 2005 until March 2006. The program MoVo-LISA was implemented beginning with an introductory seminary for all therapeutic staff only after the last patient of the control group had left the clinic. Afterwards the intervention group was recruited from May until August 2006. Both groups were selected according to the same procedures and criteria, the only difference lies in the period of observation or intervention. Although at the t1-assessment both groups turned out to be highly comparable with regard to socio-demographic and psychological characteristics, it is possible that the different periods of observation or intervention may have had a systematic impact on the findings. It could be that the difference between the groups – for instance 6 weeks after discharge (t3) – is partly due to seasonal factors. One may contend that MoVo-LISA participants became more active because it was summer when they left the clinic and it might be easier to start new activities at this time of the year. When the control group left the clinic in fall or winter, this could have been an unfavorable time to begin regular exercise. There are two arguments that speak against this "season-hypothesis": (1) There is no evidence that it is easier to start a new exercise behavior in summer than in fall or winter. (2) Even if there were such seasonal effects, they should show up in both groups in the form of delayed behavior patterns (i.e., there should be higher levels of physical exercise in both groups at those times of assessment that took place during the summer months). However, this is not the case. We therefore conclude that the findings were not substantially influenced by seasonal differences between the intervention and control group.

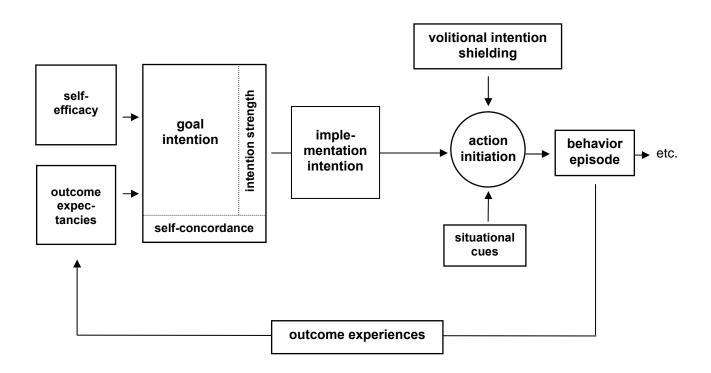
Problem of social desirability. One may argue that the observed intervention effects are biased by socially desired response tendencies that are stronger in the intervention than in the control group. The applied intervention activities (group meetings, one-on-one meeting, postal

reminder, and telephone call) may have contributed to a special commitment to the study that could dispose intervention participants to report more "desired" results. We cannot completely rule out the occurrence of such a biased response. With the integration of MoVo-LISA as a normal part of usual care and not highlighting it as a special innovation of a research group, we tried to counteract this potential problem beforehand.

Future prospects

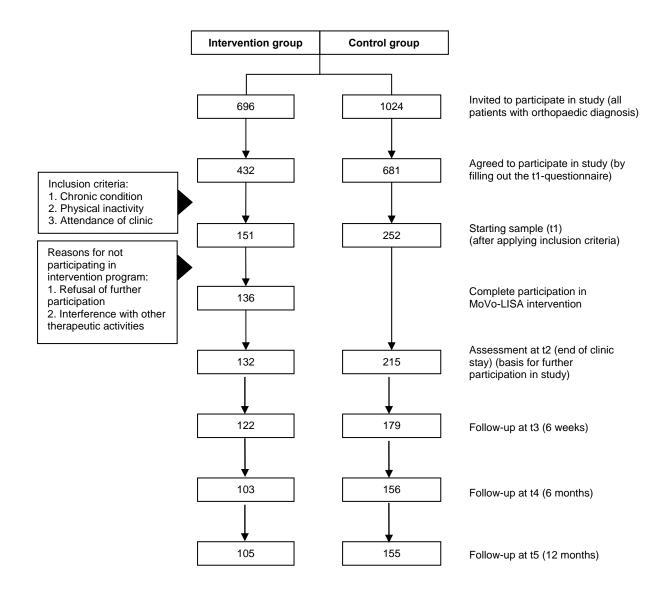
There is no intervention equally suited to everyone. With any specific program we can only ever reach a certain segment of the population (Marcus et al., 2000). This is also true for the MoVo-LISA intervention. Results reported in this paper suggest that with MoVo-LISA we are able to reach another 15-20% of all sedentary patients who are ready for change but who would not receive sufficient guidance from the usual rehab programs to actually transform their readiness into concrete actions. With MoVo-LISA, the rate of those who exercise at least 60 min/week increased up to 50% after 12 months (control group: 33%; Figure 5) – also indicating that 50% of the target group remained un-affected by this intervention. For those persons other programs need to be developed that better match their social and personal predispositions. Further analyses of the data will reveal the psychological characteristics of those participants that profited the most from the MoVo-LISA intervention. Based on these characteristics screening procedures should be developed to help identify those patients for which MoVo-LISA would be the optimal answer to their physical inactivity. It is expected that in such selected groups, the rate of effectiveness of the program can be markedly enhanced (*differential intervention*).

REFERENCES

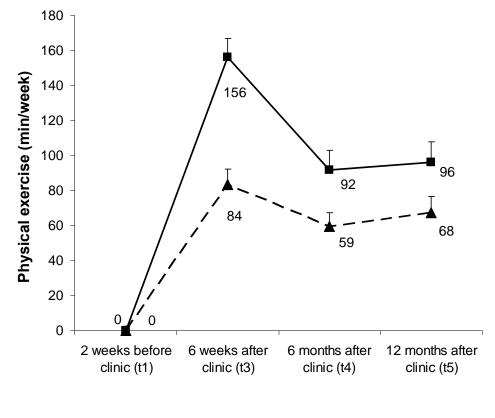

- Ajzen, I. (1991). The theory of planned behaviour. *Organisational Behaviour and Human Decision Processes*, 50, 179-211.
- Bandura, A. (2000). Health promotion from the perspective of Social Cognitive Theory. In P.
 Norman, C. Abraham & M. Conner (eds.), *Understanding and changing health behaviour* (pp. 299-339). Amsterdam, NL: Harwood Academic Publishers.
- Baumann, A. (2004). Updating the evidence that physical activity is good for health: an epidemiological review 2000–2003. *Journal of Science and Medicine in Sport*, 7 (Suppl.), 6-19.
- Baumeister, R. & Vohs, K. (eds.) (2004). *Self-regulation. Research, theory, and applications*. New York, NY: Guilford Press.
- Conner, M. & Norman, P. (2005). *Predicting health behavior: Research and practice with social cognition models*. Maidenhead, UK: Open University Press.
- Fuchs, R. (2007). Das MoVo-Modell als theoretische Grundlage f
 ür Programme der Gesundheitsverhaltens
 änderung [MoVo model as theoretical framework for health behavior change programs] (pp. 317-325). In R. Fuchs, W. G
 öhner, & H. Seelig (eds.), Aufbau eines körperlich-aktiven Lebensstils [Setup of a physically active lifestyle]. G
 öttingen: Hogrefe.
- Göhner, W. & Fuchs, R. (2007). Änderung des Gesundheitsverhaltens [Change of health behavior]. Göttingen: Hogrefe.
- Gollwitzer, P. (1999). Implementation Intentions. Strong effects of simple plans. *American Psychologist*, *54*, 493-503.
- Hillsdon, M., Foster, C., & Thorogood, M. (2005). Interventions for promoting physical activity. *The Cochrane Database of Systematic Reviews*, Issue 1. Art. No.: CD003180.pub2. DOI: 10.1002/14651858.CD003180.pub2.

- Kahn, E., Ramsey, L., Brownson, R., Heath, G., Howze, E., Powell, K., et al. (2002). The effectiveness of interventions to increase physical activity. *American Journal of Preventive Medicine*, 22, 73- 107.
- Koestner, R., Lekes, N., Powers, T., & Chicoine, E. (2002). Attaining personal goals: Selfconcordance plus implementation intentions equals success. *Journal of Personality and Social Psychology*, 83, 231-244.
- Kuhl, J. (2000). A functional-design approach to motivation and self-regulation: The dynamics of personality systems and interactions. In M. Boekaerts, P. Pintrich, & M. Zeidner (eds.), *Handbook of self-regulation* (pp. 111-169). San Diego, CA: Academic Press.
- Landers, D. & Arent, S. (2001). Physical activity and mental health. In R. Singer, H. Hausenblas & J. Janelle (eds.), *Handbook of sport psychology* (pp. 740-765). New York: Wiley.
- Lippke, S., Ziegelmann, J., & Schwarzer, R. (2004). Behavioural intentions and action plans promote physical exercise: A longitudinal study with orthopedic rehabilitation patients. *Journal of Sport and Exercise Psychology*, 26, 470-483.
- Marcus, B., Dubbert, P., Forsyth, L., McKenzie, T., Stone, E., Dunn, A., et al. (2000). Physical activity behavior change: Issues in adoption and maintenance. *Health Psychology*, 19, 32-41.
- Moore, S., Charvat, J., Gordon, N., Pashkow, F., Ribisl, P., Roberts, B., & Rocco, M. (2006). Effects of a CHANGE Intervention to increase exercise maintenance following cardiac events. *Annals of Behavioral Medicine*, *31*, 53-62.
- Milne, S., Orbell, S., & Sheeran, P. (2002). Combining motivational and volitional interventions to promote exercise participation: Protection motivation theory and implementation intentions. *British Journal of Health Psychology*, *7*, 163-184.

- Rogers, R.W. (1985). Attitude change and information integration in fear appeals. *Psychological Reports*, *56*, 179-182.
- Rothman, A. J. (2000). Toward a theory-based analysis of behavioral maintenance. *Health Psychology*, *19*, 64-69.
- Schwarzer, R. (2008). Modeling health behavior change: How to predict and modify the adoption and maintenance of health behaviors. *Applied Psychology: An International Review*, 57, 1-29.
- Sheldon, K. M. & Houser-Marko, L. (2001). Self-concordance, goal attainment, and the pursuit of happiness: Can there be an upward spiral? *Journal of Personality and Social Psychology*, 80, 152-165.
- Sniehotta, F. F., Scholz, U., & Schwarzer, R. (2005). Bridging the intention-behaviour gap: Planning, self-efficacy, and action control in the adoption and maintenance of physical exercise. *Psychology and Health*, 20, 143-160.
- USDHHS U.S. Department of Health and Human Services (2000). *Healthy people 2010*. Washington, DC: U.S. Department of Health and Human Services.
- Warburton, D., Nicol, C., & Bredin, S. (2006). Health benefits of physical activity: the evidence. *Canadian Medical Association Journal*, 174, 801-809.

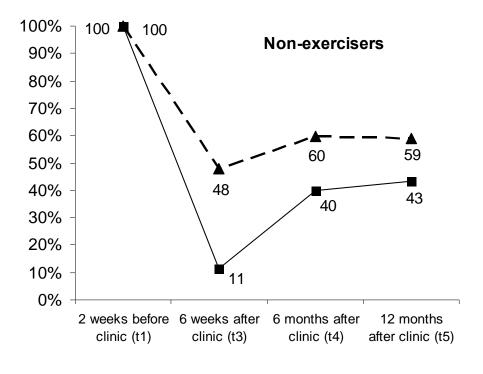

Figure 1:

The MoVo process model


Figure 2:

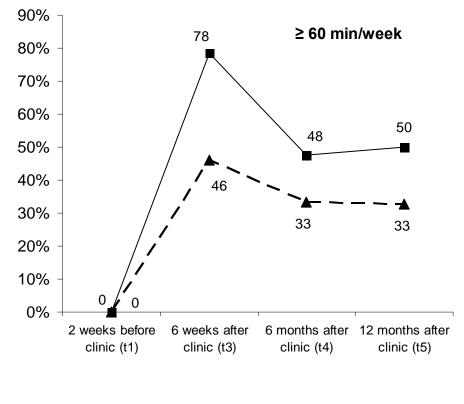
Participant flow (values are n)

Figure 3:


Means of physical exercise: Changes in the intervention and control group from t1 to t5

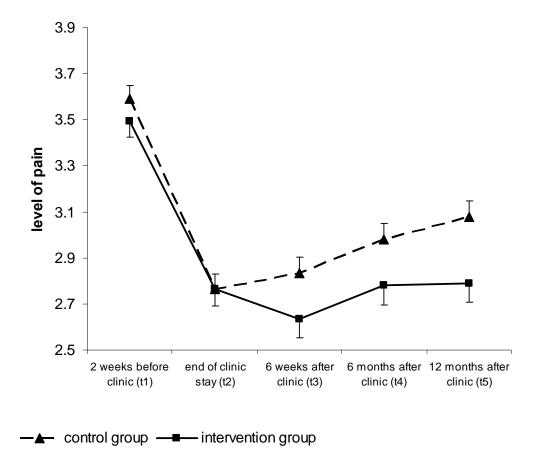
- ▲ control group — ■ intervention group

Figure 4:


Percentage of non-exercisers (0 minutes per week): Changes in the intervention and control group from t1 to t5

— ▲ control group — ■ intervention group

Figure 5:


Percentage of participants who exercise for at least 60 minutes per week: Changes in the intervention and control group from t1 to t5

- ▲ control group — ■ intervention group

Figure 6:

Means of pain experience: Changes in the intervention and control group from t1 to t5 (adjusted for sex and age)

Table 1

Demographic Characteristics of the Sample at Baseline (t1)

		intervention group		ol	difference between	
Characteristic Age [years; M (SD)]						
	(<i>n</i> = 8	8)	(<i>n</i> =13	32)	groups	
	52.3	(6.3)	50.2	(7.2)	<i>p</i> =.03	
Body Mass Index [kg/m ² ; M (SD)]	29.0	(4.9)	28.6	(5.3)	<i>p</i> =.54	
Sex [n; (% of group)]						
Female	57	(64.8)	69	(52.3)	<i>p</i> =.07	
Partnership [n; (% of group)]						
Alone living	18	(20.5)	21	(15.9)		
With partner	70	(79.5)	111	(84.1)	<i>p</i> =.39	
Education [n; (% of group)]						
No degree	1	(1.1)	3	(2.3)		
Hauptschule ^a	46	(52.3)	66	(50.0)		
Realschule ^b	26	(29.5)	29	(22.0)		
Abitur ^c	4	(4.5)	7	(5.3)		
University	5	(5.7)	18	(13.6)		
Other	6	(6.8)	9	(6.8)	<i>p</i> =.43	
Employment status [n; (% of group)]						
Currently unemployed	9	(10.2)	6	(4.5)		
Part time work	20	(22.7)	33	(25.0)		
Full time work	59	(67.0)	93	(70.5)	<i>p</i> =.26	
Rehab history [n; (% of group)]						
In-patient treatment before	43	(49.4)	57	(43.2)	<i>p</i> =.36	

^a basic secondary school; ^b middle-level secondary school; ^c general qualification for university entrance; M = mean; SD = standard deviation; n = number of cases.